Compressor Purchasing Criteria for Energy Efficiency

By: Michael Camber

During the purchasing decision process, it is common for prospects to compare compressors with some sort of utility criteria. In other words, how much air will they get for their money. Below, we address some common approaches we encounter:  

Compressor cost per horsepower 

This is a quick comparison that can be done using basic product literature, but it is a very superficial metric for comparing compressors. Since the requirements of air tools and equipment are not rated in compressor horsepower, and since the flows among compressors of the same nominal hp can vary by 20% or more, this doesn’t tell you how much air (cfm) you are getting or whether a compressor will meet your air demands (assuming you know them). Our experience with hundreds of thousands of systems has shown that without knowing your actual system needs, you are more likely to oversize your system, which leads to higher power and maintenance costs and reduced longevity (see our blog post on oversizing).    

Compressor cost per cfm

This can also be done with literature and is a step forward for basic comparison, and if you know your actual flow demands it will help avoid sizing mistakes. Like the first method, its shortfall is that it only considers initial cost. It does not reflect energy efficiency, so it is not a predictor of the largest component of compressed air life cycle costs:  electricity usage.

Compressor cost and specific power (kW/100 cfm)

Specific power is the true measure of a compressor’s efficiency, so combining this with unit cost is a better indicator of compressor value. Keep in mind, however, that specific power is based on a fixed set of conditions and assumes the compressor is running at maximum capacity, which they rarely do.  Nonetheless, when choosing machines it is very useful to compare the specific power (AKA “specific performance) of the compressors. Most major manufacturers provide this information in CAGI data sheets on their websites or by request (see our blog post on how to read them).  

System specific power

Because most compressors run partly loaded for a variety of reasons (demand fluctuation, oversizing, changes in production), the best metric for energy efficiency (and therefore compressor selection) is system specific power. This metric reflects the ability of the total system to maintain efficiency throughout the full range of production demand and is a far better metric for operational efficiency. This is not easy to assess for new plants (unless there is a similar sister plant in operation), but it is easily done for upgrades on existing systems with tools like ADA/KESS that data log  parameters including compressor run time, system pressure, power consumption and flow, and then select the best mix of machines to meet the need. We strongly recommend assessing system performance anytime you are adding or replacing compressors — even if you plan to simply replace a compressor with another of same size. This is an ideal time to baseline the system and identify inefficiencies in pressure drop, storage, sizing, and controls.

Because compressed air demand changes as plants increase or reduce production levels or upgrade pneumatic equipment, it can be a challenge to maintain optimal system performance. The best approach in multi-compressor systems is a combination of proper sizing of compressors and the use of adaptive smart controls. These learn system dynamics and switch compressors on/off in the most efficient manner while maintaining desired system pressure, balancing load hours and minimizing idle time.

Drop and give me 20!

By: Michael Camber

During a recent set up of a new controller installed to manage three compressors (two 40 hp and one 75 hp), our field rep mistakenly set the system pressure 20 psi lower than planned. A week or so later, during a system check, the technician discovered the error. Meanwhile, the plant equipment ran fine. Nobody in the plant noticed any production issues. So in addition to a 13% power reduction from better compressor management, the customer got another 10% power benefit by running at lower pressure.

We certainly don’t recommend this approach to finding your proper system pressure, but this incident highlights a very common mistake in compressed air systems: many compressed air systems are running at higher pressures than needed. A rule of thumb for typical plant air systems is that every 2 psig increase in pressure requires 1% more power. So turning up the compressors from 100 to 110 psig increases power consumption about 5%. This practice does not increase productivity. It just uses more energy— and often causes premature wear in pneumatic equipment.

If you have any doubts at all (or even if you don’t), we advise turning down the pressure to see if it affects production, but with a conservative approach. Try 1 psi per week until someone in production complains. This is a no-cost solution that immediately saves money. And the bigger the system and the higher your utility rates, the more you save. The added bonus is reducing the volume lost through leaks, and this also reduces flow demand and compressor run time.

If you are trying to overcome pressure drop between the compressor and points of use, the ideal solution is to minimize the source (s) of the pressure drop (e.g. replace clogged filters, make sure ball valves are fully open, replace undersized piping and fittings). And if it does become necessary to set pressure higher, do it incrementally. People tend to bump up the pressure 5 or 10 psi at a time without trying to adjust it back down.

This is a tip you can take to the bank.

For additional tips visit our website!

Compressed air ideas from the IMTS show floor

By Michael Camber

We spotted a good article in Plant Services this week by Ron Marshall, an independent consultant on compressed air efficiency.  Ron reported on some compressed air related innovations he saw at the big International Manufacturing Technology Show (IMTS) last fall.

In addition to covering some new controls and motor designs from compressor manufacturers, he noted some other items he saw that can save energy by reducing compressed air demands. 

Some plants divert compressed air into electrical cabinets for cooling effect.  Ron mentions some alternatives that are much more energy efficient. On a related note, he pointed out that food processors or other plants needing frequent wash down sometimes use compressed air to create positive pressure in electrical cabinets to prevent moisture infiltration.  This is effective but potentially wasteful unless the air is regulated to the minimum pressure required. Other items of interest were devices to detect leaks within pneumatic equipment and air saving nozzles for air knives. While we often emphasize methods to optimize the supply of compressed air, reducing demand-side inefficiencies is equally important.  

Check out his article here.  And while you are at it, if you are not familiar with Compressed Air Best Practices, you are missing out on a good source for ideas to improve your operations. 

CAGI: Helping you pick the good apples

By: Michael Camber

For decades, compressor manufacturers found creative ways to present their energy consumption in the most favorable light when up against competitors.  Some were more scrupulous than others, but often the customer did not get the best value possible.

In the late 1990s— to forestall potentially cumbersome government regulations— the Compressed Air and Gas Institute and its compressor manufacturer members worked together to agree upon standards for measuring the energy efficiency of compressors and a format for publishing it so that buyers and specifiers could make fair comparisons when selecting compressors.  The product of this effort is commonly known as the “CAGI datasheet” (see example below), and we’ve written about this before. The datasheets enable better apples-to-apples comparisons, and they can be helpful in providing documentation necessary for some utility rebate programs.

Sample CAGI datasheet for Kaeser's CSD 125 air compressor
Sample CAGI datasheet for Kaeser’s CSD 125 air compressor

They further agreed to test protocols and developed a Performance Verification Program in which participating members’ products are periodically and randomly selected for testing by a third party to verify the performance data that manufacturers published in the CAGI datasheets format. Participation is voluntary and open to all manufacturers, whether they are CAGI members or not.

Participants may publish a  decal on compressors as well as product literature, web pages, etc.

The key thing to be aware of is that manufacturers should not publish performance in the official format shown above or in any way present the Performance Verification logo unless they officially participate in the program and are in good standing.  As of this writing, only 9 out of 21 members of CAGI’s Rotary Positive compressor section are currently participating in the Performance Verification Program. By the way, the CAGI program is the only one of its kind.  I mention this because we’ve seen some creative marketing out there that implies government certification of product performance.

If a participating member’s products fail to measure up to published performance three times in a five year period, that manufacturer is suspended from the program for a minimum period of six months and should not present customers with CAGI datasheets or represent that they are participants in the Performance Verification Program.

If energy efficiency is important when selecting compressors, you owe it to yourself to get the product’s current CAGI datasheet and confirm the manufacturer is a current participant in the program (on the CAGI website).

Learn more about CAGI’s verification program in this video:

Additional resources:

  1. White paper: CAGI Data Sheets: An apples to apples comparison
  2. CAGI’s Performance Verification Program

What is a Flow Controller and What Does it Do?

By: Wayne Perry

A flow controller is essentially a pressure regulator that reacts very quickly to changes in downstream demand, releasing volumes of stored compressed air with precision to maintain very stable system pressure. Given adequate storage upstream, they can maintain system pressures within +/- 1 psig of target pressure even with large swings in demand. Too often, system pressure is set higher than needed to allow for fluctuation. With the precision flow controls, the target pressure setting can be reduced to the minimum required for the end uses.

Flow controllers present several significant energy savings and operating benefits, especially in older existing plants that don’t have the capital budgets available for major compressed air system re-designs. In many of these cases, system capacity is no longer well-matched to production demands.

By lowering the system pressure to its minimum, artificial demand is reduced. Further, the volume of air the compressors must produce is also reduced, so that leaks and other unregulated uses will consume less air. This is especially advantageous for installations with older piping where it may not be feasible to repair or upgrade the air distribution system. Given that the average compressed air system will leak about one third of the total air volume and unregulated uses can account for another one third, or more of total volume, this reduction in pressure can affect more than half of the total air supply. For example, if the downstream pressure can be dropped from 100 psig to 80 psig, and half of the demand is unregulated, the volume required to support the system will drop by about 10%. In a system using 2500 cfm, the drop in artificial demand (250 cfm) is equal to a 50 hp compressor. This is a conservative number since it is common that more than half of the system demand is unregulated.

In addition to reducing artificial demand, a flow controller can be used to support large intermittent demand events (like bag house purges) that might otherwise draw down the system pressure and even cause an additional compressor to start in order to rebuild the pressure.

The chart below shows a compressed air system before and after installing a flow controller.

Figure 1a

In this case, the plant was having problems with pressure swings and their supply was not quite able to meet demand. Their assumption was that a new air compressor was needed. Instead, a flow controller was installed and they were able to achieve a dramatic reduction in system pressure: from 82 psig to 69 psig, resulting in 6-1/2% power cost savings. This demand-side pressure reduction also reduced air loss due to leaks and unregulated usage by more than 13%—without fixing a leak. Adding the 6-1/2% savings from reducing the power, the 13% from the leaks, and an additional 3 – 4% for increased tool efficiency brings the total savings closer to 24%.

Another positive effect of using a flow controller to stabilize system pressure is an increase in productivity. With more stable system pressure, pneumatic devices operate more consistently, efficiently, and predictably. Nut runners, for example, will produce the same torque operation after operation with a stable pressure. Production machines will not alarm or stop due to fluctuations in system pressure. Product quality will improve. In some applications, stabilizing the air pressure has major production benefits that outweigh even large energy savings.

New installations, with today’s advanced electronic system controls, can achieve these benefits of pressure control without the use of flow controls. In many older systems, however, the flow controller offers stable system pressure without the need for advanced communications protocols—a huge benefit for systems that do not have the ability to easily connect with modern master system controllers.

This blog entry is an excerpt from our white paper, “The Proper Application of Pressure/Flow Controls”. To learn more, download the full version of the white paper here.